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Abstract Conjugate laminar forced convection heat transfer in the entry region of eccentric annuli
is numerically investigated. Heat transfer parameters are presented for a fluid of Pr = 0.7 flowing in
an annulus of radius ratio 0.5 for four values of dimensionless eccentricity ranging from 0.1 to 0.7.
Solid-fluid conductivity ratio (KR) is varied to cover the range for practical cases with commonly
encountered inner and outer tube thickness. Boundary conditions applied are isothermal heating of
the inner surface of the core tube, while the outer surface of the external tube is maintained at the
inlet fluid temperature. Limits for KR above which the conjugation can be neglected are obtained.

Nomenclature
_a = location of the positive pole of the

bipolar coordinate system on the
x-axis, equal roi Sinh �i or rio Sinh �o

Dh = hydraulic diameter of annulus,
2 (rio ± roi)

e = eccentricity (distance between axes
of the two tubes), a ( Coth �o-Coth (�i)

E = dimensionless eccentricity, e/(rio-roi)
= Sinh��iÿ�o

Sinh�iÿSinh�o

h = coordinate transformation scale factor
H = dimensionless coordinate

transformation scale factor,
h=Dh � 0:5 sinh��o�

�1ÿNR2��cosh���ÿcos����
i = index for the bipolar grid in the

�-direction and the cylindrical grid in
the radial direction

j = index for the bipolar grid in the
�-direction and the cylindrical grid in
the tangential direction

kf = thermal conductivity of fluid
ks = thermal conductivity of solid
KR = solid-fluid conductivity ratio, ks/kf

M = number of intervals in the � and
�-directions

N = number of intervals in the �-direction
NR1 = radius ratio, rii/rio

NR2 = radius ratio, roi/rio

NR4 = radius ratio, roo/rio

NSI = number of radial intervals in the
inner tube wall

NSO = number of radial intervals in the
outer tube wall

Pr = Prandtl number for fluid, � Cp/kf

QII = average heat flux on the inner
interface

r = first transverse cylindrical
coordinate

rii = inner radius of core tube
roi = outer radius of core tube
rio = inner radius of external tube
roo = outer radius of external tube
R = dimensionless radial coordinate,

r/rio

T = temperature at any point
Tm = bulk temperature at any cross-

section
To = ambient or entrance temperature
Tw = isothermal temperature of heated

wall
u = axial velocity component
uavg = average (mean) axial velocity
ufd = fully-developed axial velocity

component
U = dimensionless axial velocity,

u/uavg
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Introduction
Analysis of fluid flow and heat transfer in eccentric annuli provides a useful
model for many practical applications. Practical examples of forced convection
in annuli include flow and heat transfer in double-pipe heat exchangers, nuclear
fuel element cooling systems, absorber and glass envelope assembly in
parabolic-cylindrical solar collectors. Manufacturing tolerances and/or the
assembly process or the operating conditions lead to eccentricity. Also, since
eccentricity results in an increase in heat transfer and a simultaneous decrease
in the pressure drop (El-Shaarawi et al., 1997), it can be intentionally provided
to achieve enhanced performance of heat exchange equipment.

In conventional heat transfer analyses, it is common practice to prescribe the
temperature or the heat flux at the fluid wall interface. Consequently, the energy
equation for the fluid alone has to be solved. The results thus obtained are good
only for heat transfer in flows bounded by walls having extremely small thermal
resistance, i.e. very high thermal conductivity and/or very small thickness.

Ufd = dimensionless fully developed axial
velocity ufd/uavg

v = �-direction velocity component
V = dimensionless �-velocity component,

vDh/�
w = �-direction velocity component
W = dimensionless �-velocity component,

wDh/�
x = first transverse direction in the

Cartesian coordinate system
y = second transverse direction in the

Cartesian coordinate system
z = axial coordinate measured from the

annulus entrance
Z = dimensionless axial coordinate, z/(Dh

Re)
Z* = dimensionless axial coordinate, z/(Dh

Re Pr)

Greek letters
�R = numerical grid mesh size in R-

direction
�� = numerical grid mesh size in the

�-direction
�� = numerical grid mesh size in the

�-direction
�� = numerical grid mesh size in the

�-direction
� = second transverse bipolar

coordinate, related to the Cartesian
coordinate y by;

y � a Sin���
Cosh��� ÿ Cos���

� = first transverse bipolar coordinate,
related to the Cartesian coordinate x
by:

x � a Sinh���
Cosh��� ÿ Cos���

�i = value of � on the inner interface,

loge

N�1� E2� � �1ÿ E2�
2NE

�

�
�����������������������������������������������������

N�1� E2� � �1ÿ E2�
2NE

� �2
s

ÿ 1�

� Coshÿ1 N�1� E2� � �1ÿ E2�
2NE

� �
�o = value of � on the outer interface,

loge

N�1ÿ E2� � �1� E2�
2E

�

�
��������������������������������������������������������������

N�1ÿ E2� � �1� E2��2
2E

ÿ 1

 #vuut

� Coshÿ1 N�1ÿ E2� � �1� E2�
2E

� �
� = dimensionless temperature, (T±To)/

(Tw±To)

:�fd = fully developed value of �
� = kinematic viscosity of fluid
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However, in actual practice, the wall thermal resistance is finite and the
thermal conditions at the fluid-wall interface are different from their counterparts
imposed at the other surface of the solid walls. Thus, the thermal conditions at
the fluid-wall interface, which are not known a priori, depend on the thermal
properties and flow characteristics of the fluid as well as the dimensions and
properties of the solid wall. Such type of problems, where heat conduction in the
solid is coupled with convective heat transfer, are often referred to as the
conjugate problem. If the bounding cylinder walls are thick and have low thermal
conductivity, the heat transfer can be significantly affected and conjugation (i.e.
coupling of conduction and convection) must be taken into account.

A thorough review of the literature reveals that a solution for the problem of
conjugate forced convection heat transfer in eccentric annuli has not been
reported. The following paragraphs focus on the available literature pertaining
to forced flow and heat transfer in eccentric annuli and conjugate heat transfer
in tubes, parallel plate channels and concentric annuli.

Using the bipolar coordinates, Caldwell (1930) and Piercy et al. (1933)
showed that the MacDonald's equation for the torsion moment is comparable
with the equation for the volumetric flow rate of a fully developed forced
laminar flow through an eccentric annulus. Snyder and Goldstein (1965)
obtained the velocity distribution for the fully developed forced laminar flow
through eccentric annuli. Redberger and Charles (1962) numerically solved the
same problem using the bipolar coordinates. The differential equation was
replaced by a finite-difference representation and an iterative method was used
to solve the resultant set of algebraic equations. Cheng and Hwang (1968)
obtained a solution for the energy equation in cylindrical coordinates for the
fully developed laminar forced convection in eccentric annular ducts with heat
sources and constant wall temperature gradient.

Using the method introduced by Cheng and Hwang (1968), Trombetta (1972)
obtained an approximate analytical solution for the energy equation in cylindrical
coordinates for the hydrodynamically and thermally fully developed forced
convection in eccentric annuli under other thermal boundary conditions. Fully
developed forced convection in eccentric annuli has been treated numerically by
Suzuki et al. (1990). The finite-difference equivalents of the governing equations of
velocity and temperature fields written in bipolar coordinates were solved using
an iterative procedure. Sathymurthy et al. (1992) presented a numerical study for
fully developed laminar mixed convection in vertical eccentric annular ducts.
They solved the equations governing the velocity and temperature using a body
conforming grid and finite volume technique.

Feldman et al. (1982a; 1982b) studied the hydrodynamic and thermal entry
region for forced convection in eccentric annuli. The absence of axisymmetry
gives rise to three velocity components in this entrance region. They simplified
the hydrodynamic problem by using only two governing equations (the
continuity and the axial momentum equation); the two transverse momentum
equations were dropped. To complete their hydrodynamic model, they developed
an additional relation between the two transverse velocity components.
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El-Shaarawi et al. (1998) presented a boundary-layer model describing the
laminar forced convection heat transfer in the entry region of eccentric annuli
and a finite-difference numerical algorithm was developed for solving this
model. The main objective was to introduce a mathematically well-posed
model, i.e. a model capable of describing the forced flow and convection heat
transfer without the need of assumptions dependent on prior knowledge of the
mechanism of transverse flows in the entry region. Numerical results were
presented for the developing velocity profiles and the pressure drop in annuli of
radius ratio 0.5 and 0.9 with dimensionless eccentricity ranging from 0.1 to 0.8.
Heat transfer parameters were tabulated for a fluid of Pr = 0.7 with the
boundary conditions of an isothermally heated inner wall and an outer wall
maintained at the inlet fluid temperature.

Literature up to 1976, related to conjugate heat transfer in ducts of various
geometrical shapes, has been reviewed by Shah and London (1978). Mori et al.
(1978; 1979) considered the problem of steady conjugate heat transfer with fully
developed laminar flow between parallel plates when there is internal heat
generation in the fluid. Using the finite-difference method, Faghri and Sparrow
(1980) solved the steady conjugate heat transfer with hydrodynamically fully
developed laminar flow in a thick-walled circular tube. Pagliarini (1991) considered
the same problem with the exception that the flow is hydrodynamically
developing. Sakakibara et al. (1987) analytically investigated the steady conjugate
heat transfer problem in an annulus with a heated core and an insulated outside
tube when the laminar flow is hydrodynamically fully developed.

Using LaPlace transform techniques, Kirshan (1983) analytically solved the
transient conjugate problem for hydrodynamically and thermally fully
developed laminar pipe flow with viscous dissipation. Olek et al. (1991)
considered the same problem by means of a method of separation of variables
and concluded that the degree of conjugation and viscous dissipation may have
a great impact on the temperature distribution in the fluid.

The present work aims at obtaining a solution for the conjugate laminar
forced convection heat transfer in the entry region of eccentric annuli. A
solution for this problem has not been reported in the literature. The results of
this investigation give the limiting values for the solid-fluid conductivity ratio,
under which the conjugation should not be neglected for practical purposes.

Governing equations
Figure 1(a) shows a two-dimensional cross-section for the geometry of the
problem under consideration. The axes of the two eccentric cylinders are
perpendicular to the plane of the paper. Fluid is forced to flow axially in the
annular space between the two eccentric cylinders. This eccentric geometry can
easily be described by the bipolar coordinate system (�; � and z) shown in
Figure 1(b). The transformation equations from the Cartesian coordinate
system (x, y and z) to this bipolar system are given in the nomenclature. In this
orthogonal coordinate system the two cylindrical boundaries of the fluid
annulus coincide with two surfaces having constant values of � ��i and �o,
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which can be expressed in terms of the annulus radius ratio N and the
dimensionless eccentricity E as given in the nomenclature). The other
coordinate (�) represents a set of eccentric cylinders whose centers lie on the y-
axis and which intersect orthogonally the boundaries of the fluid annulus. The
transformed geometry for the fluid annulus in the complex � ÿ � plane is a slab
of length (�i ÿ �o) and width equal to the limits of �, that is 2�.

Figure 1.
(a) Two-dimensional

cross-section of the
geometry under

consideration. (b) The
bipolar coordinate

system
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The present work aims at obtaining a solution for the conjugate heat
transfer problem with laminar forced convection in the entry region of the
eccentric annulus. The bipolar coordinate system is used to express the partial
differential equations describing the flow and heat transfer in the eccentric
fluid annulus. In this bipolar coordinate system the boundary surfaces of the
fluid annulus are taken as one of the coordinates and the other coordinate
comprises a set of eccentric cylinders that orthogonally intersect these
boundaries. However, since the cylinder walls have uniform thickness, the
cylindrical coordinate system is more appropriate for the solid walls. Therefore,
the energy equation for each of the solid cylinder walls is expressed in
cylindrical coordinates. Continuity of temperature and heat flux at the solid-
fluid interfaces provides the necessary link. Figure 2 illustrates the numerical
meshes, with a bipolar grid in the fluid annulus and cylindrical grids in the two
solid walls.

The flow is assumed to besteady and the fluid is Newtonian with constant
properties. Body forces, viscous dissipation, internal heat generation and
radiation heat transfer are all absent. Axial diffusion of momentum in the
fluid and that of energy in both the fluid and the solid are neglected. Pressure is
a function of the axial coordinate only and momentum equation in the �-
direction (i.e. the radial-like direction) is dropped, since the �-velocity
component (v) is much smaller than the �- and z-velocity components (w and u,
respectively).

Under these assumptions and using the following dimensionless
parameters: H = h/Dh, KR = ks/kf, NR1 = rii/rio, NR2 = roi/rio, NR4 = roo/rio, R =
r/rio, U = u/uavg, V = v Dh/�, W = w Dh/�, Z = z/(Dh Re), � = (T±To)/(Tw±To),
we obtain the following six dimensionless equations:

Continuity equation

@�HW�
@�

� @�HV �
@�

� @�H
2U�

@Z
� 0 �1�

Figure 2.
Sample of the
numerical grid mesh for
N = M = 10, NSO = 4
and NSI = 2;
computations were done
using a mesh with
N = M = 20; NSO = 16
and NSI = 8
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�-Momentum equation
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Energy equation for the fluid
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Integral form of the continuity equation

�U � 8�1ÿ N2�
��1� N2�

Z �

0

Z �i

�o

UH 2d�d� � 1:0 �5�

Energy equation for each solid wall

@2�s

@R2
� 1

R

@�s

@R
� 1

R2

@2�s

@�2
� 0 �6�

Equation (6) is applied twice, once for the outer wall with �s = �so and R
varying from NR3 = 1 to NR4 and then for the inner wall with �s = �si and R
varying from NR1 to NR2.

Equations (1) to (6) inclusive are subject to the following boundary
conditions:

. for Z = 0 and �o < � < �i, V = W = P = 0 and U = 1

. for Z� 0 and � � �i, U = V = W =0

. for Z� 0 and � � �o, U = V = W =0

. for Z� 0 and R = NR1, �= 1

. for Z� 0 and R = NR4, �= 0

. for Z� 0 and � = 0 and � (the line of symmetry)
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@V

@�
� @W

@�
� @U

@�
� @�
@�
� @�s

@�
� 0 �7�

The hydrodynamically fully developed flow, which occurs if the channel is
sufficiently long, provides an analytical check on the numerical solution to be
obtained. For this case, V = W = 0, @U/@Z = 0, dP/dZ = constant, the �-
momentum equation and the inertia terms on the left-hand side of the axial
momentum equation vanish and the axial momentum equation reduces to

@2Ufd

@�2
� @

2Ufd

@�2
� H 2 dP

dZ

� �
fd

�8�

This equation is identical to the equation of steady-state heat conduction with
internal heat generation which was solved by El-Saden (1961). The solution of
this equation is

Ufd � A�� � Bÿ C�

2
coth � �

X1
n�1

cos n��Cen� � �D ÿ C� coth ��eÿn�� �9�

Applying the boundary conditions, the constants of integration A*, B, C, C*
and D can be determined (El-Shaarawi et al., 1998).

Numerical analysis and method of solution
The six dimensionless equations listed in the previous section were expressed in
finite-difference forms. A numerical algorithm has been used to solve for the three
velocity components, pressure and temperature in the fluid and the temperatures in
the solid cylinders. The existing computer program which was used to obtain the
results reported in El-Shaarawi et al. (1997; 1998) has been modified to incorporate
the inner and outer wall thickness and the solid-fluid conductivity ratio.

Since the governing equations for the fluid are in bipolar coordinates, whereas
the energy equations for the solid walls are in cylindrical coordinates, the two
grids are linked by applying the principles of the continuity of temperature (using
an interpolation procedure) and the continuity of heat flux at the two interfaces.

Using backward difference to express all first derivatives with respect to Z and
the first derivative of (HV) with respect to � in the continuity equation and replacing
the second and other derivatives in � and � directions by central finite-differences,
equations (1) to (6) inclusive can be written in the following forms respectively:

Continuity equation

H�i; j�1�W�i; j�1�ÿH�i; jÿ1�W�i; jÿ1�
2��

� H�i; j�V�i; j�ÿH�iÿ1; j�V�iÿ1; j�
��

� H2�i; j�U�i; j� ÿ U��i; j�
�Z

� 0 �10�
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�-Momentum equation

W ��i; j�
H�i; j�

W�i; j�1�ÿW�i; jÿ1�
2��

� V ��i; j�
�H�i; j��2

H�i�1; j�W�i�1; j�ÿH�iÿ1; j�W�iÿ1; j�
2��

U��i; j�W�i; j� ÿW ��i; j�
�Z

ÿ �V
��i; j��2
�H�i; j��2

H�i; j� 1� ÿ Hi; jÿ 1�
2��

� 1

�H�i; j��3
H�iÿ1;j�W�iÿ1;j�ÿ2H�i;j�W�i;j��H�i�1;j�W�i�1;j�

����2

� H�i;jÿ1�W�i;jÿ1�ÿ2H�i;j�W�i;j��H�i;j�1�W�i;j�1�
����2

0@ 1A
2

�H�i; j��4
H�i � 1; j� ÿ H�i ÿ 1; j�

2��

� � H�i�1;j�W�i�1;j�ÿH�iÿ1;j�W�iÿ1;j�
2��

H�i;j�1�V ��i;j�1�ÿH�i;jÿ1�V ��i;jÿ1�
2��

0@ 1A
� 2

�H�i; j��2
H�i; j� 1� ÿ H�i; jÿ 1�

2��

U�i; j� ÿ U��i; j�
�Z

�11�

Axial, Z ± Momentum equation

W ��i; j�
H�i; j�

U�i; j� 1� ÿ U�i; jÿ 1�
2��

� V ��i; j�
H�i; j�

U�i � 1; j� ÿ U�i ÿ 1; j�
2��

� U��i; j�U�i; j� ÿ U ��i; j�
�Z

� P�i; j� ÿ P��i; j�
�Z

� 1

�H�i; j��2
U�iÿ1;j�ÿ2U�i;j��U�i�1;j�

����2
U�i;jÿ1�ÿ2U�i;j��U�i;j�1�

����2

0@ 1A
�12�

Energy equation for the fluid

W ��i; j�
H�i; j�

��i; j� 1� ÿ ��i; jÿ 1�
2��

� V ��i; j�
H�i; j�

��i � 1; j� ÿ ��i ÿ 1; j�
2��

� U��i; j� ��i; j� ÿ �
��i; j�

�Z

� 1

Pr�H�i; j��2
��iÿ1;j�ÿ2��i;j����i�1;j�

����2
��i;jÿ1�ÿ2��i;j����i;j�1�

����2

0@ 1A
�13�
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Integral form of the continuity equation

8�1ÿ NR2�
��1� NR2�

 
0:5
XN

i�2

U�i; j��H�i; 1��2 � U�i;M � 1��H�i;M � 1��2

�
XM
j�2

XN

i�2

U�i; j��H�i; j��2
!

���� � 1

�14�

Energy equation for each solid wall

�s�i�1; j�ÿ2�s�i; j���s�iÿ1; j�
��R�2

� 1

�NR� ÿ �i ÿ 1��R�
�s�i � 1; j� ÿ �s�iÿ1; j�

2�R

1

�NR� ÿ �i ÿ 1��R�2
�s�i; j� 1� ÿ 2�s�i; j� � �s�i; jÿ 1�

����2 � 0

�15�

Equation (15) is applied for the outer wall with �s = �so, NR* = NR4 and also
applied for the inner wall �s = �si, NR* = NR2.

The finite-difference equations (10) to (15) inclusive are linearized by
assuming that, where the product of two unknowns occurs, one of them is given
approximately by its value at the previous axial step, the variable superscripted
with an asterisk (*). Moreover, backward differences are used to express all first
Z-derivatives, since the equations are parabolic with respect to Z. Additionally, in
the finite difference representation of the �-momentum equation, all the values of
V have been deliberately taken at the previous axial step in order to make the
equation locally (i.e. within one axial step) uncoupled from the continuity
equation. Thus the finite-difference equations (10-15) represent a complete
mathematical model of six equations in six unknowns (U, V, W, P, �, and �s) and
are numerically solved in the manner described hereafter. For the sake of
symmetry, these equations need to be solved in only half the domain, i.e. for 0
� � � �. The variables U, V, W, � and �s are computed, for a given location (Z),
at the intersection of the grid lines, i.e. the mesh points.

For a fluid of a given Pr, flowing in an annulus of given NR2 and E, the
numerical solution of this set of equations is obtained by first calculating the
corresponding values of �i and �o (El-Shaarawi et al., 1998). The inner radius of the
outer tube is used as reference and hence NR3 = 1. By selecting the number of
increments in the � and � directions (N and M, respectively) the values of �� and
�� can be computed. Similarly, for the solid walls, by selecting the values of NR1

and NR4 and the number of increments in the radial (R) and tangential (�) directions
(NSO, NSI and M, respectively) the values of �Ro, �Ri and �� can be determined.

Details of the numerical solution in the fluid annulus are given in El-
Shaarawi et al. (1998). However, they are summarized hereafter. To solve for
the two unknowns, P and U, at the first plane after the inlet cross-section, the
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integral form of the continuity equation (14) and the finite-difference form of the
axial momentum equation (12) are used. An extension to a special form of the
Gauss-Jordan elimination scheme has been applied to solve the obtained
matrix. The �-momentum equation (11) is then solved for W using Gauss-Seidel
iteration and the continuity equation (10) is used to solve for V. Finally, the
energy equations for the fluid (13) and solid (15) are simultaneously solved for
the temperatures using Gauss-Seidel iteration. The simultaneous solution of
equations (13) and (15) results in obtaining the unknown values �, �so and �si at
the second cross-section. Repeating this procedure, we proceed downstream in
the Z-direction until the flow becomes fully developed.

With the boundary conditions imposed at the inner surface of the inner tube
and the outer surface of the outer tube, the interface conditions are unknown.
Also, the eccentric annulus is fitted with a bipolar mesh, whereas the walls
have a cylindrical one resulting in 2M+2 mesh points at both the interfaces.
Therefore, the three grids are linked by applying the principles of continuity of
temperature and flux at four points on the intersection of the interfaces with the
line of symmetry and the principle of continuity of temperature, using an
interpolation procedure, at the other mesh points on the interfaces.

Results and discussion
Six controlling parameters are explicitly required to solve the problem under
consideration. These are the annulus radius ratio (NR2), the dimensionless
eccentricity (E), the outer wall radius ratio (NR4), the inner wall radius ratio (NR1),
the solid-fluid conductivity ratio (KR), the Prandtl number (Pr). It is worth
mentioning that the eccentricity e can vary from zero to a maximum value of (rio

± roi) = Dh/2. Thus the dimensionless eccentricity E can vary from zero to unity.
Computations were carried out for a fluid of Pr = 0.7 in an annulus of radius ratio
NR2 = 0.5 with NR4 = 1.2 and NR1 = 0.4 for values of E = 0.1, 0.3, 0.5 and 0.7 and
KR = 1, 10, 50, 100 and 1,000. The reason for the selection of NR2 = 0.5 is that
most of the results in the literature for the conventional problem (i.e. neglecting
the effect of conjugation) are reported for this particular value, which represents
a typical annular geometry. Only one value of Pr = 0.7 has been selected due to
space limitations and since it represents air. The selected values of NR4 and NR1

are typical practical values, as can be seen from Table I, which lists some values
of radius ratios for possible combination of inner/outer standard steel pipes.
Table II indicates practical values of the solid fluid conductivity ratio (KR) and
displays the widest possible range.

To check the adequacy of the present computer code, special runs were made
with very large values of KR and very thin walls. For a typical large value of
solid-fluid conductivity ratio (KR) = 1,000 and very thin walls corresponding to
NR1 = 0.499, NR2 = 0.5 and NR4 = 1.002, the results of the present computer code
with E = 0.5 and 0.6, for the fully developed heat transfer parameters, are in
excellent agreement with the conventional case results (Trombetta, 1972;
Feldman et al., 1982b; El-Shaarawi et al., 1998). The maximum deviation between
the present results and those of Trombetta (1972), Feldman et al. (1982b) and
El-Shaarawi et al. (1998) are 0.3 percent, 1.4 percent and 0.05 percent, respectively.
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Moreover, results obtained by setting E = 0.01 with the above-mentioned values
of KR and NR4 but with NR1 = 0.249 and NR2 = 0.25, are in good agreement with
the conventional solutions for the concentric case, as reported in the literature
(Shah and London, 1978); the maximum deviation is about 2 percent. Tables III
and IV give comparisons between the present numerical solutions and other
corresponding conventional solutions available in the literature.

Results have been obtained using a grid of 20 segments in each of the � and �
directions in the fluid annulus. For the solid walls, 20 segments were used in the
tangential (�) direction with 16 and eight segments in the radial (R) direction for
the outer and inner walls respectively; the outer tube thickness being taken as
twice that of the inner one. At 20 percent CPU share, the time required for one run

Nominal size (inch) Radius ratios
Dimesionless

tube thickness
Inner Outer NR1 NR2 NR4 Inner Outer

1
4 1 SCH. 40 0.35 0.51 1.25 0.17 0.25

SCH. 80 0.32 0.56 1.37 0.25 0.37
3
8 1 1/4 SCH. 40 0.36 0.49 1.20 0.13 0.20

SCH. 80 0.33 0.53 1.30 0.20 0.30
1
2 1 1/2 SCH. 40 0.39 0.52 1.18 0.14 0.18

SCH. 80 0.36 0.56 1.27 0.20 0.27
3
4 2 SCH. 40 0.40 0.51 1.15 0.11 0.15

SCH. 80 0.38 0.54 1.22 0.16 0.22
1 2 1/2 SCH. 40 0.42 0.53 1.16 0.11 0.16

SCH. 80 0.41 0.57 1.24 0.15 0.24
1 1

2 4 SCH. 40 0.40 0.47 1.12 0.07 0.12
SCH. 80 0.39 0.50 1.18 0.10 0.18

Table I.
Radius ratios for
standard steel pipes

Material
Ther. conductivity

(W/M-DEG.C)

Air @ 300K 0.02624
Carbon steel (1 % C) 43
Water-saturated @ 300K 0.613
Cast iron (4 % C) @ 293K 52
Engine oil (SAE 50) @ 293K 0.145
Aluminium metal @ 293K 236
Asbestos @ 273K 0.154
Plastic 0.48

Solid-fluid conductivity ratio ± KR
Air Water Oil

Aluminium 8993.90 384.99 1627.59
Cast iron 1981.71 84.83 358.62
Steel 1638.72 70.15 296.55
Plastic 18.29 0.78 3.31
Asbestos 5.87 0.25 1.06

Table II.
Common values of KR
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Table III.
Comparisons with

available conventional
solutions for concentric

annuli, NR1 = 0.249,
NR2 = 0.25; NR4 =

1.002; KR = 1,000; E =
0.01; Pr = 0.72
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was about two hours and a half on an IBM RISC mainframe computer with AIX
operating system. The machine has a RAM of 256MB and speed 71.5MHz. With
a finer mesh, N = M = 30, the time increased eightfold, requiring about 24 hours
at the same CPU share. However, the difference in the values of the results for the
two mesh sizes was not significant (maximum 3 percent) and therefore the
former mesh (N = M = 20) was used for all computations. On the other hand,
since very large gradients exist near the entrance, computations were made with
very small axial steps near the entrance �Z = 10±10), with the axial step size
being gradually increased several times as the flow moves downstream to reach
a maximum value of �Z = 10±3 near full development.

It is worth mentioning that the higher the Peclet number, the more valid is
the assumption of no axial direction heat transfer in the solid. The reader may
refer to a paper by Schmidt and Zeldin (1970) in this context.

Results of Tiedt as reported by Shah and London (1978) for E = 0.6, Pr = 0.7

DPDZFD
Tiedt Present

Analytical Numerical
31.818 31.963 32.207

Results of Trombetta (1972) for E = 0.6; Pr = 0.7
HFIFD NUIFD NUOFD

Trombetta Present Trombetta Present Trombetta Present
3.582 3.593 5.746 5.738 4.754 4.762

Results of Feldman et al. (1982b) for E = 0.5; Pr = 1.0
DPDZFD

Feldman
et al. Present

Analytical Numerical
35.34 35.49 35.73

�m,fd NUIFD NUOFD
Feldman
et al. Present

Feldman
et al. Present

Feldman
et al. Present

0.3848 0.3793 5.39 5.383 4.308 4.318
�m NUII NUOI

Z*
Feldman

et al. Present
Feldman

et al. Present
Feldman

et al. Present
0.001 0.0362 0.0416 13.08 15.119 0.00042 0.00008
0.01 0.1319 0.1526 6.858 7.668 3.46 1.537
0.1 0.3209 0.3517 5.184 5.35 4.601 4.334
HFI Heat flux on the inner interface
HFO Heat flux on the outer interface
NUII Nusselt number on the inner interface
NUOI Nusselt number on the outer interface
�m Mixed-mean temperature
�m;fd Fully developed mixed-mean temperature
HFIFD Fully developed value of HFI
NUIFD Fully developed value of NUII
NUOFD Fully developed value of NUOI

Table IV.
Comparisons with
available results for
eccentric annuli, NR1 =
0.499; NR2 = 0.5; NR4

= 1.002; KR = 1,000
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Owing to space limitations, only a representative sample of the results will
be shown here. Figures 3 and 4 show the developing temperature profile,
corresponding to different values of Z, across the narrowest and the widest
gaps, respectively for KR = 10 and E = 0.5. It is noticed that full development is
reached significantly faster across the narrowest gap (Z = 0.0832) compared
with the widest gap (Z = 0.203). This is expected because the eccentricity leads
to a reduced overall resistance across the narrowest gap, resulting in the heat
signal being sensed relatively earlier.

Figure 3.
Developing temperature

profiles across the
narrowest gap. E = 0.5,

KR = 10, NR1 = 0.4, NR2

= 0.5 and NR4 = 1.2

Figure 4.
Developing temperature

profiles across the
widest gap. E = 0.5, KR
= 10, NR1 = 0.4, NR2 =

0.5 and NR4 = 1.2
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Each pair of Figures 5-8 displays the variation with KR, of the fully developed
temperature profile across the narrowest and the widest gaps in the same annulus
(NR1 = 0.4, NR2 = 0.5 and NR4 = 1.2) but for E = 0.3 and E = 0.5, respectively. It is
obvious that increasing the value of KR results in a smaller temperature drop
across the solid walls. The effect of increasing eccentricity is a steeper temperature
profile across the narrowest gap and a flatter one across the widest gap.

Figures 9 and 10 give the variation with eccentricity, at KR = 10, of the fully
developed circumferential temperature distribution at the outer and the inner
interfaces respectively. The figures indicate how the increase in the value of the
eccentricity enhances the circumferential variation of temperature. The

Figure 5.
Variation with KR of the
fully developed
temperature profile
across the narrowest
gap. E = 0.3, NR1 = 0.4,
NR2 = 0.5 and NR4 = 1.2

Figure 6.
Variation with KR of the
fully developed
temperature profile
across the widest gap.
E = 0.3, NR1 = 0.4,
NR2 = 0.5 and NR4 = 1.2
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increased circumferential temperature variation at the interfaces results in
increased deviation from the conventional case with isothermal boundaries;
thus consideration of conjugation is more important at higher eccentricities. It
can be observed from Figures 9 and 10 that the higher the value of E, the higher
the temperature at the narrowest gap ( = 1) on the outer interface and at the
widest gap ( = 0) on the inner interface. Moreover, the higher the value of E,
the higher the circumferential variation of temperature on either interface (i.e.
higher circumferential temperature gradient). Consequently, the higher the
value of E, the larger the circumferential heat flow. The circumferential heat

Figure 7.
Variation with KR of the

fully developed
temperature profile

across the narrowest
gap. E = 0.5, NR1 = 0.4,
NR2 = 0.5 and NR4 = 1.2

Figure 8.
Variation with KR of the

fully developed
temperature profile

across the widest gap.
E = 0.5, NR1 = 0.4,

NR2 = 0.5 and NR4 = 1.2
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flow on the inner interface is in the positive �-direction (i.e. from the widest to
the narrowest gap side). However, it is in the opposite direction (the negative �-
direction) on the outer interface.

Figures 11 and 12 show the effect of KR (at E = 0.5) and eccentricity (at KR =
10) respectively, on the axial distribution of the peripherally averaged heat flux on
the inner interface. Figure 11 indicates that increasing KR results in increased
heat flux, approaching almost exactly the values of the conventional case at KR =

Figure 9.
Variation with
eccentricity of the fully
developed
circumferential
temperature distribution
at the outer interface.
KR =10, NR1 = 0.4, NR2

= 0.5 and NR4 = 1.2

Figure 10.
Variation with
eccentricity of the fully
developed
circumferential
temperature distribution
at the inner interface.
KR =10, NR1 = 0.4,
NR2 = 0.5 and NR4 = 1.2
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100 (with a maximum deviation of 0.5 percent based on the conventional case
results). Figure 12 highlights that heat flux increases with increasing eccentricity.

Engineers are not frequently concerned with the temperature profiles but
with the mixed-mean (mixing-cup) temperature. The importance of the mixed-
mean temperature comes from the fact that it can be directly used to obtain the
heat gained by the fluid. Figures 13 and 14 present the variation with KR and
eccentricity, respectively, of the axial distribution of the mixing-cup
temperature �m.

Figure 12.
Variation with

eccentricity of the axial
distribution of the

circumferentially
averaged heat flux at the

inner interface.
KR = 10, NR1 = 0.4,

NR2 = 0.5 and NR4 = 1.2

Figure 11.
Variation with KR of the
axial distribution of the

circumferentially
averaged heat flux at the

inner interface.
E = 0.5, NR1 = 0.4, NR2

= 0.5 and NR4 = 1.2
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Away from the entrance, the lower values of �m and higher values of KR in
Figure 13 indicate increased local heat flux due to reduced wall resistance. This
is because the local heat flux is directly proportional to the difference between
the wall temperature and the fluid mixed-mean temperature (Q / (�w ±�m)).
Consequently, with an isothermal boundary (�w = 1), the increase in the value
of �m will cause a decrease in the local value of the wall heat flux (Q). However,
it can be noticed that near the entrance the trend is reversed, i.e. the higher the
value of KR, the higher the value of �m. The reason for this is that near the
entrance the increase in the value of KR results in more heat being gained by

Figure 13.
Variation with KR of the
axial distribution of the
mixing-cup temperature.
E = 0.5, NR1 = 0.4, NR2

= 0.5 and NR4 = 1.2

Figure 14.
Variation with
eccentricity of the axial
distribution of the
mixing-cup temperature.
KR = 10, NR1 = 0.4, NR2

= 0.5 and NR4 = 1.2
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the fluid through the isothermally heated surface than that lost by the fluid
through the wall maintained at the ambient temperature. The increase in the
heat gained by the fluid near the entrance through the heated boundary is
attributed to the presence of the radial-like (�) and tangential-like (�) velocity
components. These two velocity components decay as the flow moves away
from the entrance and hence the reverse phenomenon occurs, as explained
before. Moreover, near the entrance, the fluid near the outer wall has not sensed
the heat signal and is still at the ambient temperature, resulting in no heat loss
through the outer ambient wall. As the flow moves downstream, heat loss
through the outer wall initiates due to the rise in the fluid temperature.

For a given value of KR (KR = 10), Figure 14 presents the axial variation
of �m for various values of E. As can be seen from this figure, for a given Z,
the higher the value of E, the lower the value of �m. The decrease in the value of
�m with E is attributed to the increase in the mass flow rate through the annulus.

Finally, it is of practical importance to know the value of KR beyond which
the conjugate effect can be neglected. Figure 15 shows graphically the results of
the present investigation for the percent difference variation in �m,fd from the
conventional case with KR and E. This percent difference is based on the
conventional values of �m,fd. The `̀ critical'' value of KR for a given eccentricity
has been arbitrarily chosen as that value which causes �m,fd to differ by no
more than 1 percent from the conventional solution result for a given
eccentricity. According to this criterion, the critical values of KR are also
presented in Table V. As can be seen from this table, the higher the value of E,
the higher the critical KR. Thus it can be concluded that the effect of
conjugation increases with eccentricity.

Figure 15.
Percentage difference in

�m;fd from the
conventional case

plotted against solid-
fluid conductivity ratio
(KR) for various values
of E. Critical KR values

for a 1 percent difference
are highlighted
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However, Figure 15 can also be used to obtain critical KR values for other
percent difference criteria. Moreover, for given E and KR, this diagram can be
useful in correcting available conventional results to take into account the
effect of conjugation.

Conclusions
The present work was aimed at obtaining a solution for the conjugate laminar
forced convection heat transfer in the entry region of eccentric annuli. Thermal
boundary conditions applied are isothermal heating of the inner surface of the
inner tube while the outer surface of the outer tube is maintained at the inlet
fluid temperature. A model using bipolar grid to fit the eccentric annulus and
cylindrical grids in the walls has been presented. A linearized finite-difference
algorithm has been developed to solve the model equations which comprise the
continuity equation, the axial and tangential-like momentum equations and the
fluid and solid energy equations.

Numerical results are presented for a fluid of Pr = 0.7 flowing in an annulus of
radius ratio 0.5 for four values of dimensionless eccentricity. The solid-fluid
conductivity ratio (KR) was varied to cover the range for typical practical cases
with standard tube thickness. The numerical results indicate that conjugation
can have an appreciable effect on the heat transfer parameters and that this effect
increases with increasing eccentricity. Thus, taking this into consideration, the
conjugation is more important at higher eccentricities. Based on the results of
this investigation, limits have been determined for the solid-fluid conductivity
ratio, above which conjugation can be neglected for practical purposes.
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